
VHDL

INTRODUCTION

▪ The V H S I C Hardware Description Language (VHDL) is an
industry standard language used to describe hardware from the
abstract to concrete level.

▪ The language not only defines the syntax but also defines very
clear simulation semantics for each language construct.

▪ It is strong typed language and is often verbose to write.

▪ Provides extensive range of modeling capabilities,it is possible to
quickly assimilate a core subset of the language that is both easy
and simple to understand without learning the more complex
features.

Why Use VHDL?

▪ Quick Time-to-Market

• Allows designers to quickly develop designs requiring tens of
thousands of logic gates

• Provides powerful high-level constructs for describing complex
logic

• Supports modular design methodology and multiple levels of
hierarchy

▪ One language for design and simulation

▪ Allows creation of device-independent designs that are portable to
multiple vendors. Good for A S I C Migration

▪ Allows user to pick any synthesis tool, vendor, or device

▪ C O N C U R R E N C Y .

▪ S U P P O R T S S E Q U E N T I A L STATEMENTS.

▪ S U PPO R TS F O R TEST & SIMULATION.

▪ STR O N GLY TYPED L A N G U A G E .

▪ S U P P O R T S HIERARCHI ES .

▪ S U PPO R TS F O R V E N D O R D E F I N E D LIBRARIES.

▪ S U P P O R T S MU LTIVALU ED L O G I C .

BASIC FEATURES OFVHDL

CONCURRENCY

respect towith

▪ V H D L is a concurrent language.

▪ H D L differs with Software languages
Concurrency only.

▪ V H D L executes statements at the same time in parallel,as
in Hardware.

SUPPORTS SEQUENTIAL
STATEMENTS

▪ V H D L supports sequential statements also, it executes one
statement at a time in sequence only.

▪ As the case with any conventional languages.

example:

if a=‘1’ then

y<=‘0’;

else

y<=‘1’;

end if ;

SUPPORTS FOR TEST&
SIMULATION.

▪ To ensure that design is correct as per the specifications, the
designer has to write another program known as “TEST
B E N C H ” .

▪ It generates a set of test vectors and sends them to the design
under test(DUT).

▪ Also gives the responses made by the D U T against a
specifications for correct results to ensure the functionality.

STRONGLY TYPED
LANGUAGE

▪ V H D L allows L H S & R H S operators of same type.

▪ Different types in L H S & R H S is illegal in V H D L .

▪ Allows different type assignment by conversion.

example:

A : in std_logic_vector(3 downto 0).

B : out std_logic_vector(3 downto 0).

C : in bit_vector(3 downto 0).
B <=A;

B <= C;
--perfect.

--type miss match,syntax error.

▪ Data Flow level

• In this style of modeling the flow of data through the entity is
expressed using concurrent signal assignment statements.

▪ Structural level

• In this style of modeling the entity is described as a set of
interconnected statements.

▪ Behavioral level.

• This style of modeling specifies the behavior of an entity as a
set of statements that are executed sequentially in the
specified order.

LEVELS OF ABSTRACTION

entity full_adder is
port(a,b,c:in bit;sum,cout:out bit);

end full_adder;

architecture fulladd_mix of full_adder is

component xor2

port(p1,p2:in bit; pz:out bit);

end component;

signal s1:bit;

begin

x1:xor2 port map(a,b,s1);

process(a,b,c)

variable t1,t2,t3:bit;

begin

t1:=a and b;
t2:=b and cin;

t3:=a and cin;

cout <= t1 or t2 or t3;

end process

sum <= s1 xor cin;

end fulladd_mix;

E X A M P L E S H O W I N G
ABSTRACTION
L E V E L S

structure
dataflow

behavior

x1
s1

a

b

c

sum

cout

VHDL
IDENTIFIERS
▪ Identifiers are used to name items in a V H D L model.

▪ A basic identifier may contain only capital ‘A’ - ’Z’ , ‘a’ - ’z’,

‘0’ - ’9’, underscore character ‘_’

▪ Must start with a alphabet.

▪ May not end with a underscore character.

▪ Must not include two successive underscore characters.

▪ Reserved word cannot be used as identifiers.

▪ V H D L is not case sensitive.

▪ There are three basic object types in V H D L

• Signal : represents interconnections that connect components
and ports.

• Variable : used for local storage within a process.

• Constant : a fixed value.

▪ The object type could be a scalar or an array.

OBJECTS

DATA TYPES IN
VHDL
▪ Type

• Is a name which is associated with a set of values and a set of
operations.

▪ Major types:

• Scalar Types

• Composite Types

SCALAR
TYPES
▪ Integer

Maximum range of integer is tool dependent

type integer is range implementation_defined

constant loop_no : integer := 345;

Signal my_int : integer range 0 to 255;

▪ Floating point

• Can be either positive or negative.

• exponents have to be integer.

type real is range implementation_defined

▪ Physical

Predefined type “Time” used to specify delays.

Example :

type TIME is range -2147483647 to 2147483647

▪ Enumeration

Values are defined in ascending order.

Example:

type alu is (pass, add, subtract, multiply,divide)

SCALAR TYPES
(Cont..)

COMPOSITE
TYPES

▪ There are two composite types

▪ ARRAY :

• Contain many elements of the same type.

• Array can be either single or multidimensional.

• Single dimensional array are synthesizable.

• The synthesis of multidimensional array depends upon the
synthesizer being used.

▪ R E C O R D :Contain elements of different types.

THE STD_LOGIC
TYPE
▪ It is a data type defined in the std_logic_1164 package of

I E E E library.

▪ It is an enumerated type and is defined as

type std_logic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’,’-’)

‘u’
‘x’
‘0’
‘1’
‘z’
‘w’
‘l’
‘h’
‘-’

unspecified
unknown
strong zero
strong one
high impedance
weak unknown
weak zero
weak one
don’t care

SIGNAL
ARRAY

▪ A set of signals may also be declared as a signal array which is a
concatenated set of signals.

▪ This is done by defining the signal of type bit_vector or
std_logic_vector.

▪ bit_vector and std_logic_vector are types defined in the
ieee.std_logic_1164 package.

▪ Signal array is declared as : <type>(<range>)

Example:

signal data1:bit_vector(1 downto 0)
signal data2: std_logic_vector(7 down to 0);
signal address : std_logic_vector(0 to 15);

SUBTYPE

▪ Itis a type with a constraint

▪ Useful for range checking and for imposing additional
constraints on types.

▶ syntax:

▶ subtype subtype_nameis base_type rangerange_constraint;

▶ example:

▶ subtype DIGITSis integer range 0 to 9;

MULTI-DIMENSIONAL ARRAYS

Syntax

type array_name is array (index_ range , index_range) of element_type;

example:

type memory is array (3 downto 0, 7 downto 0);

▪ For synthesizers which do not accept multidimensional
arrays,one can declare two uni- dimensional arrays.

example:

type byte is array (7 downto 0) of std_logic;

type mem is array (3 downto 0)of byte;

OPERATORS
precedence Operator class

Operators
Low

High

Logical and or nand nor Xor xnor

Relational = /= < <= > >=

Shift sll srl sla sra rol ror

Add + - &

Sign + -

Multiply * / mod rem

Miscella-
neous

* * abs not

Data Flow
Modeling

▪ A Dataflow model specifies the functionality of the entity without
explicitly specifying its structure.

▪ This functionality shows the flow of information through the
entity, which is expressed primarily using concurrent signal
assignment statements and block statements.

▪ The primary mechanism for modeling the dataflow behavior of an
entity is using the concurrent signal assignment statement.

DATAFLOW
LEVEL

ENTITY
▪ Entity describes the design interface.

▪ The interconnections of the design unit with the external world
are enumerated.

▪ The properties of these interconnections are defined.

entity declaration:

entity <entity_name> is

port (<port_name> : <mode> <type>;

… .

);

end <entity_name>;

▪ There are four modes for the ports in V H D L

in, out, inout, buffer

▪ These modes describe the different kinds of interconnections that
the port can have with the external circuitry.

Sample program:

entity andgate is

port (c : out bit;
a : in bit;

b : in bit

);

end andgate;

ARCHITECTURE

▪ Architecture defines the function-
ality of the entity.

▪ It forms the body of the V H D L code.

▪ An architecture belongs to a speci-
fic entity.

▪ Various constructs are used in the
description of the architecture.

architecture declaration:

architecture <architecture_name> of

<entity_name> is

<declarations>

begin
<vhdl statements>

end <architecture_name> ;

entity

ports

EXAMPLE OF A VHDL
ARCHITECTURE

entity andgate is

port (c : out bit;

a : in bit;

b : in bit

);

end andgate;

architecture arc_andgate of andgate is

begin

c <= a and b;

end arc_andgate;

a

b

candgate

▪ Syntax:

signal signal_name : type := initial_value;

▪ Equivalent to wires.

▪ Connect design entities together and communicate changes in
values within a design.

▪ Computed value is assigned to signal after a specified delay called
as Delta Delay.

SIGNALS

▪ Signals can be declared in an entity (it can be seen by all the
architectures), in an architecture (local to the architecture), in a
package (globally available to the user of the package) or as a
parameter of a subprogram (I.e. function or procedure).

▪ Signals have three properties attached to it.

▪ Type and Type attributes,value,Time (It has a history).

▪ Signal assignment operator : ‘<=‘.

▪ Signal assignment is concurrent outside a process & sequential
within aprocess.

CONCATENATION
▪ This is the process of combining two signals into a single set

which can be individually addressed.

▪ The concatenation operator is ‘&’.

▪ A concatenated signal’s value is written in double quotes whereas
the value of a single bit signal is written in single quotes.

WITH-SELECT

▪ The with-select statement is used for selective signal assignment.

▪ It is a concurrent statement.

Syntax

with expression select:

target <= expression 1 when choice1

expression 2 when choice2
.
.
.

expression N when others;

Example:
entity mux2 is

port (i0, i1 : in bit_vector(1 downto 0);

y : out bit_vector(1 downto 0);

sel : in bit

);

end mux2;

architecture behaviour of mux2 is

begin

with sel select

y <= i0 when '0',

i1 when '1';

end behaviour;

WHEN-ELSE

syntax :

Signal_name<= expression1 when condition1 else

expression2 when condition2 else

expression3;

Example:

entity tri_state is

port (a, enable : in std-logic;

b : out std_logic);

end tri_state;

architecture beh of tri_state is

begin

b <= a when enable =‘1’ else

‘Z’;

end beh;

WHEN-ELSE VS.WITH-
SELECT

▪ In the ‘with’ statement,choice is limited to the choices provided
by the with‘express-ion’.

▪ In the ‘when’ statement each choice itself can be a separate
expression.

▪ when statement is prioritized (since each choice can be a
different expression,more than one condition can be true at the
same time, thus necessitating a priority based assignment)

▪ with statement does not have any priority (since choices are
mutually exclusive) .

DELAYS INVHDL

▪ V H D L allows signal assignments to include delay specifications,
in the form of an ‘after’ clause.

▪ The ‘after’ clause allows you to model the behavior of gate and
delays.

▪ Delay’s are useful in simulation models to estimate delays in
synthesizable design.

Two fundamental delays are

• Inertial delay.

• Transport Delay.

INERTIALDELAY

▪ Inertial Delay models the delays often found in switching circuits
(component delays).

▪ These are default delays.

▪ Spikes are not propagated if after clause is used.

▪ An input value must be stable for an specified pulse rejection limit
duration before the value is allowed to propagate to the output.

▪ Inertial delay is used to model component delay.

▪ Spike of 2ns in cmos component with delay of 10ns is normally
not seen at the output.

▪ Problem arises if we want to model a component with delay of
10ns, but all spikes at input > 5 ns are visible output.

▪ Above problem can be solved by introducing reject & modeling
as follows:

outp <= reject 5 ns inertial Inp after 10 ns;

INERTIAL DELAY
(Cont..)

TRANSPORT
DELAY

▪ Transport
which

delay models the behavior of a wire, in
all pulses (events) are propagated.

▪ Pulsesare propagated irrespective of width.

▪ Good for interconnect delays.

▪ Models delays in hardware that does not exhibit
any inertial delay.

▪ Represents pure propagation delay

▪ Routing delays can be modeled using

transport delay Z<=transporta after 10

ns;

▪ Main purpose of block statement is organizational only or for
partitioning thedesign.

syntax:
block_label :block

<declarations>

begin

<concurrentstatements>

end blockblock_label;

▪ Introduction of a Block statement does not directly affect the
execution of a simulation model.

▪ Block construct only separates part of the code without adding
any functionality.

BLOCK
STATEMENTS

Behavioral
Modeling

BEHAVIORLEVEL

▪ The behavior of the entity is expressed using sequentially
executed, procedural code, which is very similar in syntax and
semantics to that of a high level programming languages such as
C or Pascal.

▪ Process statement is the primary mechanism used to model the
behavior of anentity.

▪ Process statement has a declarative part (before the keyword
begin) and a statement part (between the keywords begin and
end process).

▪ The statements appearing within the statement part are
sequential statements and are executed sequentially.

SEQUENTIAL PROCESSING
(PROCESS)
▪ Process defines the sequential behavior of entire or some portion

of the design.

▪ Process is synchronized with the other concurrent statements
using the sensitivity list or wait statement.

▪ Statements, which describe the behavior in a process, are
executed sequentially.

▪ All processes in an architecture behave concurrently.

▪ Simulator takes Zero simulation time to execute all statements
in a process.

▪ Process repeats forever, unless suspended.

▪ Once the process has started it
takes time delta ‘t’ for it to be
moved back to waiting state.
This means that no simulation
time is taken to execute the
process.

PROCESS
(Cont..)

▪ Process can be in waiting or
executing.

syntax:
process (sensitivitylist)

<declarations>

begin

<sequential statements>;

end process;

process(clk,reset)

begin

if reset=‘1’ then

Z<=‘0’;

elsif clk’event and clk = ‘1’then

Z<=(i1 and i2) and i3;

end if;

end process;

executing

start

waiting

reset

i1

i2

i3

clk

u1
u2

temp
Z

D F F

▪ Combinational process:

• Aim is to generate pure combinational circuit.

• All the inputs must be present in sensitivity list.

• Latches could be inferred by the synthesizer to retained the
old value, if an output is not assigned a value under all
possible condition

• To avoid inference of latches completely specify the values of
output under all conditions and include all ‘read’ signals in
the sensitivitylist.

PROCESS
TYPES

▪ Clocked processes:

• Clocked processes are synchronous and several such processes
can be joined with the same clock.

• Generates sequential and combinational logic.

• All signals assigned within clock detection are registered(i.e.
resulting flip-flop)

• Any assignment within clock detection will generate a Flip-flop
and all other combinational circuitry will be created at the ‘D’
input of the Flip-flop.

PROCESS TYPES
(Cont..)

SIGNALS WITHIN
PROCESS

▪ Process places only one driver on a signal.

is the last value▪ Value that the signal is up-dated with
assigned to it within the process execution.

▪ Signals assigned to within a process are not updated with their
new values until the process suspends.

SEQUENTIAL
CONSTRUCTS

▪ The final output depends on the order of the
statements, unlike concurrent statements where the
order is inconsequential .

▪ Sequential statements are allowed only inside
process.

▪ The process statement is the primary
concurrent VHDL statement used to

describe sequential behavior.

▪ Sequential statements can be used to generate
both combina- tional logic and

sequential logic.

SEQUENTIAL PROCESS TO

MODEL JK FLIP-FLOP

process (clk)
variable state : bit := ‘0’;

begin

if clk’event and clk=‘1’ then

if(j=‘1’ and k=‘1’) then

state:=not state;

elsif(j=‘0’ and k=‘1’) then

state:=‘0’;

elsif(j=‘1’ and k=‘0’) then

state:=‘1’;

end if;

Q<=state;

Qbar<=not state;

end if ;

end process;

syntax :

variable variable_name: type := initial_value;

▪ Can be declared and used inside a process statement or in
subprogram.

▪ Variable assignment occurs immediately.

▪ Variables retain their values throughout the entire simulation
Sequential (inside process)

▪ Variable have only type and value attached to it.They don’t have
past history unlike signal.

▪ Require less memory & results in fast simulation

VARIABLES

constant constant_name : type := value;

▪ Constants are identifiers with a fixed value.

by the simulation▪ They should not be assigned any values

process.

▪ Constants improve the clarity and readability of a project.

▪ It is used in place of the value to make the code more readable

CONSTANTS
syntax :

S I G N A L
▪ Connects design entities together

(acts as a wire).

▪ Signals can be declared both
inside and out side of the process
(sequential inside process,
concurrent outside process)

▪ Signals have 3 properties
attached

• Type & Type Attributes.

• Value.

• Time.(it has a history)

▪ Signal is assigned it’s value after
a delta delay.

▪ Signals require more memory &
showers simulation.

within
VARIABLE
▪ These are identifiers

process or subprogram.

▪ Variables can only be declared
inside a process. These cannot
be used to communicate

concurrentbetween two
statements.

▪ Variables have only
• Type.

• Value.

▪ Variable is assigned its value
immediately.

▪ Variable require less memory
& enables fast simulation.

SIGNAL vs.VARIABLE

S I G N A L VARIABLE
process process
begin begin

wait for 10 ns; wait for 10 ns;
Sum1<=sum1+1; Sum1:=sum1+1;
Sum2<=sum1+1; Sum2:=sum1+1;
end process; end process;

Time sum1 sum2 Time sum1 sum2
0 0 0 0 0 0

10 0 0 10 1 2
10+1delta 1 1 10+1delta 1 2
20 1 1 20 2 3
20+1 delta 2 2 20+1 delta 2 3
30 2 2 30 3 4
30+1delta 3 3 30+1delta 3 4

SIGNALvs. VARIABLE
EXAMPLE

SEQUENTIAL
STATEMENTS

selects one or none of a sequence of▪ An if- elsif- else statement
events toexecute.

▪ The choice depends on one or more conditions.

▪ If-else corresponds to when else command in the concurrent part.

▪ if statements can be used to gene-rates prioritized structure.

▪ if statements can be nested.

syntax:
if <condition1> then

<statements>;
elsif <condition2> then

<statements>;
… .

else

<statements>;
end if ;

C A S E STATEMENT:

▪ The case statement selects,one of a number of alternative
sequences of statements depending on the value of the select
signals.

SEQUENTIAL STATEMENTS
(Cont..)

▪ All choices must be enumerated. ‘others’ should
be used for enumerating all remaining

choices which mustbe the last choice.

▪ Case statement results in a parallel

structure. Syntax

<seq_statements>

<seq_statements>

case expression is
when choice1 =>

when choice2 =>

… … . .

when others => <default_instruction>
end case;

L O O P STATEMENTS

▪ Used to iterate through a set of sequential statements.

▪ No declaration is required explicitly for Loop identifier.

▪ Loop identifier cannot be assigned any value within Loop.

▪ Identifier outside the loop with the same name as loop identifier
has no effect on loop execution.

SEQUENTIAL STATEMENTS
(Cont..)

SEQUENTIAL STATEMENTS
(Cont..)

WHILE LO O P :

Syntax :
loop_label:while condition loop

<sequence of statements>
end loop loop_label

▪ Statements are executed continuously as long as condition is true.

▪ Has a Boolean Iteration Scheme.

▪Condition is evaluated before execution.

FOR LO O P :

Syntax :
loop_label: for loop_parameter in discrete_range loop

<sequence of statements>

end loop loop_label;

SEQUENTIAL STATEMENTS
(Cont..)
WAIT STATEMENT :

▪ The wait statement gives the designer the ability to suspend the
sequential execution of a process or a sub-program.

▪ The wait statement specifies the clock for a process statement
that is read by synthesis tools to create sequential logic such as
registers andflip-flops.

▪ It can also be used for delaying process execution for an amount of
time or to modify the sensitivity list of the process dynamically.

▪ Three different options available for wait are

1) wait on signal 2) waituntil Boolean_expr 3) wait for time_expr

WAIT O N signal:

▪ Specifies a list of one or more signals that the WAIT statement
will wait for events upon.if any signal list has an event occur on
it, execution continues with the statement following the wait
statement.

example: WAIT O N a,b;

WAIT UNTILexpression:

▪ Suspends execution of the process until the expression returns a
value of true.

example: WAIT U N TI L ((x * 10) < 100);

WAIT F O R time_expression:

▪ Suspends execution of the process for the time specified by the
time expression.

example: WAIT F O R 10 ns;

SEQUENTIAL STATEMENTS
(Cont..)

